Solving Differential Equations by Substitution Methods

1) Use the substitution $y=v x$ (where v is a function of x) to solve the equation
$x^{2} \frac{d y}{d x}=x^{2}+x y+y^{2}$
given that $\mathrm{y}=0$ when $\mathrm{x}=2$.
2) Show that the substitution $z=\frac{1}{y^{2}}$ transforms the equation
$2 \frac{d y}{d x}-y=2 y^{3} e^{x}$
into the equation
$\frac{d z}{d x}+z=-2 e^{x}$
and hence find the general solution of the original equation
3) Use the substitution $w=\frac{d y}{d x}$ to eliminate y from the equation
$x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=x \ln x$
and hence find the general solution of this equation.
4) Use the substitution $w=\frac{d y}{d x}$ to eliminate x from the equation
$y^{3} \frac{d^{2} y}{d x^{2}}+1=0$
Hence find the solution of this equation for which $\mathrm{y}=1$ and $\frac{d y}{d x}=2$ when $\mathrm{x}=0$.
5) Use the substitution $y=x^{2}+z$ (where z is a function of x) to find the general solution of the equation $\left(1-x^{2}\right) \frac{d y}{d x}+x y=2 \mathrm{x}-x^{3}$
6) Use the substitution $x=e^{t}$ to find the general solution of the equation
$x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+3 y=x^{2}$
7) Use the substitution $y=z-x$ to find the solution of
$(x+y) \frac{d y}{d x}=x+y-2$
for which $\mathrm{y}=2$ when $\mathrm{x}=2$.
8) $y=x \tan \left(\ln \left(\frac{x}{2}\right)\right)$
9) $y^{2}=\frac{1}{A e^{-x}-e^{x}}$
10) $y=\frac{1}{6} x^{2} \ln x-\frac{5}{36} x^{2}+\frac{A}{x}+B$
11) $1+3 y^{2}=(3 x+2)^{2}$ or $y=\sqrt{3 x^{2}+4 x+1}$
12) $y=x^{2}+A \sqrt{1-x^{2}}$
13) $y=A x^{3}-x^{2}+B x$
14) $x+y-1=3 e^{x-y}$
